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Fourier Spectroscopy: An Introduction

Ernest V. Loewenstein
Air Force Combridge Ressorch Laboratories,
Bedford, Massachusetts

Abstract

In this paper we start with an elementary discussion of the Michelson inter-
ferometer, leading into an extensive discussion of the mathematics involved in
Fourier spectroscopy. Emphasis is placed on the use of the convolution theorem.
The maximum allowable solid angle of light beam illuminating an interferometer is
derived and compared with grating instruments. Special aspects of Fourier spec-
troscopy such as apodization, noise, and mathematical filtering are discussed.

1-1 THE MULTIPLEX PRINCIPLE

The superiority of Fourier spectroscopy over
grating spectroscopy for high resolution work under
low light level conditions has been incontrovertibly
demonstrated by the Conneses in their near infrared
planetary spectral. There are many reasons why the
Fourier method is inherently superior. The two most
often quoted are the multiplex advantage (Fellgett)
and the aperture advantage (Jacquinot). In addition,
absolute wavenumber accuracy is guaranteed by the
known wavelength used for carriage control, the
physical apparatus is inherently simple, and both
stray light and overlapping spectral orders are
eliminated. The multiplex gain is the salient feature
of Fourier spectroscopy, and we will commence with
an elementary derivation.

Let us assume that the spectrum to be investigated
extends from o; to o, wavenumbers, that the desired
resolution is 8¢, that the system is detector-noise
limited, and the time available for the study is 7.

We define the number of spectral elements:
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(1-1)

If we observe each element sequentially (as with a
grating spectrometer) for a time T/m, the signal to
noise ratio will be proportional to (T/m)2, while if
we observe each element for the entire time, T, the
signal to noise for each element will be proportional
to TY2. There is thus a gain of a factor of m'/2 when
all the spectral elements are observed concurrently,
which is the multiplex gain. It sometimes happens,
as in emission spectroscopy, that parts of the spectral
range 0; to o, contribute no energy to the signal.
The effective: number of spectral elements is then




k<m, but there remains a multiplex advantage as
long as k> 1.

There must, of course, be a method of coding the
spectral elements so that they can subsequently be
separated unambiguously. This method is provided
by the two-beam interferometer that changes each
wavenumber, o, in the spectrum into an electrical
frequency, f, according to the equation

J=vo (1-2)

where v is the rate of change of path difference. The
superposition of all these frequencies is the inter-
ferogram, which is then reduced to a spectrum by
means of a Fourier transformation. The Michelson
interferometer (or one of its variants) is almost
universally used for Fourier spectroscopy, and all
discussions in this paper refer directly to it.

1-2 THE MICHELSON INTERFEROMETER I: ELEMENTARY
CONSIDERATIONS

An elementary discussion of the Michelson inter-
ferometer serves as a convenient starting point to
introduce many of the ideas we will need in Fourier
spectroscopy and to lead us into the background
mathematics that will be developed in Section 1-3.
The interferometer and collimating optics are illus-
trated in Figure 1-1. In this initial discussion we will
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Figure 1-1. Michelson Interferometer. M, and M, are the
end mirrors, M.’ is the image of M, as seen through the beam-
splitter (BS)

assume an on-axis, quasi-monochromatic point source
and a beamsplitter of negligible thickness, with

(complex) amplitude transmittance and reflectance

t and r, respectively.

ing from the interferometer in the direction of the
detector is

-

A:iet = 4 (rt)[ei(ul—2l'zlv) +ei(ul—2fzzv)] (1_3)

where z; and z, are the round-trip distances from the
beamsplitter to Af; and M ,, respectively. The energy
reaching the detector is:

Egeu=|Abet|?=24%rt|)[1+cos 2m(z; —25)0).  (14) -

e

Let A%=B(o)do; |rt|>=§, the beamsplitter effi-
ciency; z; —z, =1z, the-path difference. Then

Egu= 28§ig_)[1 +cos 2oz do. (1-5)

The interferogram is defined as the varying part of
Eq. (1-5); i.e.,

dI(z) =28B(o)(cos 27oz) do (1-6)

- e
P -

and we see immediaéely that the interferogram
produced by a quasi-monochromatic line is a cosine
function. A broad spectral range, then, requires an

integral over o:
I(z)= fo ® dI(z) =28 [o ® B(0)(cos 270z) do  (1-7)

which is the cosine Fourier integral of the spectrum.
The recovery of the spectrum is then achieved by
taking the inverse Fourier transform.

It is worthwhile to make a slight digression at this
point to show, in an order-of-magnitude calculation,
the relationship between the resolution, ¢, and the
maximum path difference, L, attained in the inter-
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ferogram. We take as an arbitrary criterion that the
‘minimum resolvable wavenumber interval occurs
when there is a difference of one cycle of interference
petween two closely spaced lines. Thus, we have
for one of the lines

L=m/o (1-8)
and for the other
1
L= ;n-:;cr ) (1-9)

Eliminating L between Egs. (1-8) and (1-9), we have

éo=0/m, (1-10)

and substituting from Eq. (1-8) we find that, for an
order of magnitude criterion,

do=1/L. (1-11)

The resolution of the interferometer is inversely
proportional to the path difference between the
interfering beams. This is identical with the situation
we find in the use of a diffraction grating, which gives
its highest resolution when used at grazing incidence,
where the path difference between the extreme inter-
fering rays is a maximum.

Returning now to the question of reducing the
interferogram, we see that we must discuss not only
the Fourier transform but also sampling theory,
because we must sample the interferogram to read
it into the digital computer. The question of analog
computation, which has received some attention in
the past, need no longer concern us. The analog
computer has severely limited accuracy and dynamic
range compared to even the smallest modern digital
computer. The advent of the fast Fourier transform
has eliminated considerations of cost and computing
time. The digital computer, furthermore, may be

programmed to do much more than merely compute
the Fourier transform. It may, for example, be used
to compute line positions, or intensities, absorption
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coefficients, energy levels, or any of a host of other
spectroscopic quantities. It may even be used to
control the entire process from taking the interfero-
gram to producing a graphical display of the results.

1-3 MATHEMATICS FOR FOURIER SPECTROSCOPY

1-3.1 The Fourier Integral

The Fourier integral may be defined by the pair of
equations

f(z) = [_‘: F(0)e*™** do (1-12a)

F(o)= /_‘; f(@)e= 2" 4z (1-12b)

or by the representation equation

f(z) =/; [f;f(x)e—izf:' dx] 273 4o (1-13)

The reciprocal quantities z and ¢ have dimensions of
length and inverse length respectively. Fourier
transform pairs will, with one exception, be denoted
by using lower and upper case of the same letter;
ie.,, Fl@)=F.T. [f(z)]. The exception is that the
interferogram and spectrum will be denoted by I(z)
and B(o), respectively. The meaning of Eq. (1-13)
is that f(z) may be represented by the process de-
scribed, ie., a “round trip” through the Fourier
transform. The existence conditions are: (1) f(z)
must be absolutely integrable, i.e.,

[7 15 dz< e

where A/ is some finite number, and (2) f(z) may have
at most a finite number of finite discontinuities. At a
point of discontinuity, it can be shown that the in-
tegral of Eq. (1-13) converges to 3[f(z+)+f(z—)],
i.e., the midpoint of the jump. Certain obvious
functions that do not have Fourier transforms are:

(1) A constant
(2) Any periodic function
@) J(z)=1/z.

A pictorial table of some elementary and useful
Fourier transforms is given in Figure 1-2, and we use
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Figure 1-2. Some Useful Fourier Transform Pairs

this occasion to define these useful functions:

|z| <%

rect (z) ={(1) 53 (1-14)
A@@) ={é—"| I'ﬂ;i (1-15)
sine (z) =S2.7F. (1-16)

T

The value of rect (z) at z= =% is not defined, but we
will only be using it in the form of Fourier transforms
and thus will automatically get

rect (—3%)=rect (3)=4.

The functions illustrated in Figure 1-2 are also an
example of the fact that at least one of a Fourier pair
hasinfinite extent. In the case of Fourier spectroscopy,
a spectrum of finite extent produces an interferogram
of infinite extent, which must of course be truncated,

-

and the consequences of this truncation will be dis- '

cussed presently.

There are three important theorems regarding
Fourier transforms that we shall need upon occasion,
and they are listed here without proof:

Shift theorem

FT(f(z+0))=ei2**2F (o) (1-17)
Scale change
Prisel = F (%) (1-18)
Rayleigh’s Theorem
[C V@ dz=[" [F@Ide.  (1-19)

(Rayleigh’s theorem is the analog of Parseval’s
theorem for Fourier series). The proof of the first
two is accomplished by a simple change of variable;
the third is slightly longer and may be found in
Bracewell. - :

1-3.2 Even ond Odd Functions
An even function is one for which

E(z)=E(—2)

while an odd function has

O(z)=—-0(-2).

Any complex function may be written as

f(z)=E'(2)+0'(z) +1[E” (z) 40" (z)).

(1-20)

8.5
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The Fourier transform of any even function reduces

" to & cosine transform, for an odd function it becomes a

sine transform. Thus

F(o)=FT[f(z)] =2 /o ® E'(z) cos 2oz dz
+2¢ f ® E"(z) cos 2moz dz
0
+2¢ jm 0'(z) sin 2woz dz
0

-2 / * 0" sin 270z dz.
0

If we now consider only real f(z), such as the inter-
ferograms encountered in Fourier spectroscopy, we
have

E"(z)=0"(z)=0

and

F(o)=2 f: E’(z) cos 2moz dz

+2; /0 ® 0'(z) sin 2moz dz.  (1-21)

The spectrum, thus, is Hermitian, or complex sym-
metric; i.e.,

F(0)=F*(—o0).

That is, no matter how badly distorted the inter-
ferogram may be, the spectrum derived from it is not
worse that Eq. (1-21) (which is bad enough).

1-3.3 The § Function -
The & function is best defined in terms of the im-
portant sifting property

7 5(2) f(z) dz=1(0), (1-22)

7

provided that f(z) is continuous at z=0. The
normalization condition is added:

/_‘: 8(z) dz=1. (1-23)

This function is often referred to as the Dirac &-
function, but it was not entirely an original idea with
Dirac; physicists had long felt the need of a function
that is large in a localized region and small every-
where else, to pick out the value of a field variable at
one point. Dirac originally defined 8(z) as if it were a
proper function with a value f(z) assigned to every z.
This procedure quickly encounters trouble with the
mathematical formalities, but this can be largely
avoided by using Eq. (1-22) to define the one property
of &(z) that we really need. (A discussion of the
mathematical niceties is given by Papoulis®.)

Two important properties of §(z) easily shown by
change of variable are:

[7 sz=a)f(z) dz=1(a) (1-24)

and

/ " san)f@) do= ll /_: a(z)f(g) dz. (1-25)

— fal

Using the form of Eq. (1-24), we consider the Fourier
transform

FT[G(::—a)]=[ (z—a)e**" " dz

— eiztva, (1'26)

which is a monochromatic, complex harmonic func-
tion. To get a real harmonic function we may use
either of the following:

N
FT[4(8(x—a)+ 86(z+a))]=cos 2roa (1-27a)

or

FT[—1/2(8(x—a)— 6(z+a))] =sin 2moa. (1-27D)
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The inverse Fourier transform, however, does not
exist, since the results in Egs. (1-26) and (1-27) are
not absolutely integrable. The é-function, therefore,
is not strictly suited to Fourier theory, unless we
somehow terminate its harmonic transform. We
shall consider the consequences of doing this, after
discussing the convolution.

1-3.4 Convolution and Autocorrelation
We define the convolution of two functions

h(z) =f(z) * g(z) = /_: Juwg(z—u) du (1-28)

and the autocorrelation of a function

12) % f2) = [° fa)f'+2) dz'. (1-29)

We shall consistently use the asterisk and the five-
pointed star to represent convolution and autocor-
relation, respectively. The autocorrelation for even
functions is easily shown to be self-convolution of the
function. These two processes are important to us
because there is a useful theorem regarding the
TFourier transform of each. The convolution theorem
states .

FT[f(z) » 9(2))=FT(f(z)]- FTlg(x)], (1-30)

i.e., the Fourier transform of a convolution of two
functions is the product of the Fourier transforms of
the individual functions. Multiplication and con-
volution may thus be interchanged, at the cost of
performing some Fourier transforms. The theorem
regarding the autocorrelation is the Wiener-Khinchine
theorem, which states that the Fourier transform of
the autocorrelation of a function is its power spectrum.
This provides the necessary link between the inter-
ferogram and the spectrum, for an interferogram is
the autocorrelation of the incident wave amplitude.
It is worth spending a little time to clarify graph-
ically the meaning of the convolution, as contrasted
with multiplication. In multiplication the product of
two functions is obtained simply from the product of
the ordinates in the region of overlap, when one is
placed over the other with their origins coincident.
Convolution involves a displacement of the origin of
one of the functions with respect to the other and, in

fact, it is the distance between the origins that is the
independent variable of the convolution, h(z). The
entire procedure of convolution may be outlined as
follows:

(1) Reverse one of the functions, say f(z). (It is
immaterial which one is reversed, since it is eilementary
to show that f«g=g » f.)

(2) Displace the origin of f(z)_to the left by some
sufficient distance; call it z,.

(3) Lay the reversed, displaced f(z) over g(z).

(4) Multiply the functions in the overlap region
and integrate the product.

(3) This forms the convolution at z= —z,.
(6) Move the displaced function to the right by a
distance Az, and repeat the procedure.

The “sufficient” distance, mentioned in Step 2, is

obvious in the case of functions of finite extent in z;

it is the minimum distance necessary to produce zero

overlap. Figure 1-3 illustrates progressively the
===
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Figure 1-3. Illustration of the Convolution Pro-
cess, Using the Convolution of Two Rect Functions.
The progress of the convolution function, h(z), is
shown as the convolvant is slid along

convolution of two rect functions. While it is true
that this example is equally the autocorrelation
function, its simplicity and clarit).' commend it to us.
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The interested reader will find numerous other
- examples illustrated in Chapter 3 of Bracewell?.

It is not always so easy to see through the con-
volution process, and we now turn to an example
where the convolution theorem is useful. Let us in-
quire for the convolution.

h(z) =sine (z) = sinc (z).

These are functions of infinite extent with many
“viggles”, and graphical methods will obviously lead
to confusion. We may take the Fourier transform

H(o) =FT[sinc (z) = sinc ()]

and, by the convolution theorem, Eq. (1-30),

H(o)=FT[sinc (z)] - FT[sinc (z)].

We already know that the Fourier transform of sinc (z)
is rect (o) (see Figure 1-2), so

H(o) =rect (o) - rect (¢) =rect? (o) =rect ()

and

h(z) =FT[H (¢)] =sinc (z).

We have the rather surprising conclusion that
sinc = sinc=sin¢ (and also incidentally that sinc (z)
Is its own autocorrelation). This is less surprising

when we consider that the frequency content of the
sinc function is given by the rect function, which is
constant up to some cutoff. Multiplying by another
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rect of the same width does not alter the frequency "
content and thus gives back the original funetion in
the z domain.

In the examples above we have illustrated the
convolution of two functions of equal width. The
more common situation is that one of the convolvants
is considerably narrower than the other. Consider,
for example, the convolution of a rect function with
an arbitrary function that has features that are
narrow compared to the width of the rect function.
The effect of the convolution is to smooth out the
narrow features. This is the “blurring” or “running
average” property of the convolution. The average
we get is weighted by the shape of the narrow con-
volvant, and considerable distortion can result if its
shape is sufficiently outlandish.

As a final example of the convolution theorem we
will illustrate the effect of truncating the interfero-
gram. It will be recalled that the interferogram arising
from a pair of & functions centered at =0, is

cos 2moor. Now assume this is truncated by rect% .

The interferogram then becomes

I'(z) =cos 2mo oz Tect (‘%)

and the Fourier transform is:

B'(0) =I§“ (8(c —00)+8(c+00)] » sine (La).

The sinc function is referred to as the scanning func-
tion for rectangular truncation. Its convolution with
the & function yields sinc function spectral lines.
These of course are considerably distorted from the
lines we started with, since the § function has zero
width and no side lobes. The width of the sinc
function at half maximum, which may be taken as a
measure of the resolution of the interferometer, is
1/2L. This is in consonance with our previous order-
of-magnitude calculation that vielded 1/L. The side
lobes of the sinc function are particularly undesirable,
for when convolved with a spectral feature narrow
compared to 1/2L they can produce spurious oscilla-
tions, which arc exemplified in the well-known Gibbs’
phenomenon. These side lobes may be suppressed
by the process of apodization that is discussed in
Section 1-6 of this paper.

L4
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1-3.5 Sampling and Replicating, the Shah Function
The sampling function, known as wi(z) (shah), or
the & function comb, is defined as

wi(z) = i 8(z—n)

N =-——0

(1-31)

which is a series of & functions at the integers. It is
quite obvious that

wi(z+m) =wwi(z) (m=any integer)

and it is not difficult to show that

wi(azx) =(}T) w ( -—E) . (1-32)

a

Less obvious, but of paramount importance for our
study of Fourier spectroscopy, is the fact that w is
its own Fourier transform:

FT[w(az)] =% w(c/a). (1-33)

This is shown as follows:

Friwl= ¥ > [ a(e-t) e
=_1_| z‘: a(zng).

- —g0

The right-hand side is familiar from the theory of
diffraction gratings or Fabry-Perot interferometers
as a series of spikes of frequency 1/a; since the sum
truly extends to infinity, the spikes in this case are
infinitely sharp.

We shall be concerned with ws not only as a
sampling but also a replicating function. These
properties are illustrated in Figure 1-4. Sampling is

MULTIPLICATION
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I
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Figure 1-4. The Use of the W Function for Sampling

(by multiplication) and Replicating (by convolvmg)
There is an understood integral over the infinite range in
the multiplication process

accomplished by multiplication

W@f@= 3 fm) s (13)
and replication by convolution
wi(z) = f(z) =n_i_‘j(x—n). (1-35)

The difference between these two processes is the -

sliding property of the convolution, as has been
discussed above.

When sampling an interferogram (or any function)
it is of primary importance to know what sampling
frequency is needed. This information is supplied
by the sampling theorem that will be illustrated here,
rather than rigorously derived. Assume we have &
spectrum B(g) extending from O t0 Omax, s illustrated
in Figure 1-5. The interferogram is I(z), and it is

B

1€ 5P
this inf

It is e
overlaj

This js
Sample



as a

These
‘ing is

~ling
:ng).
z2in

1-34)

1-35)

= the
been

ction)
apling
splied
. here,
ave a
-rated
St is

)
Bl “%max “mox
K PP A /\ N Aaa
I(X) RAAARY Vo™
X
(%) UL
—=i —AX
s
w(z) |
-—Ac—
o
Blo) ¥ u;l(—;: (Ao =17AX) ! ) |
N \ N \ N
(/ \\\4:/ g \\ /, \\\L’ d \\ 1/ \L;L
Figure 1-5. Illustrating the Replication of the Spectrum

Arising From the Sampling of the Interferogram. The last line
is used to show that the sampling interval in the interferogram
must be AT=4omax

sampled at intervals Az; the sampled interferogram is

I'(z) =u_|<§-x) - I(z).

The spectrum derived from the Fourier transform of
this interferogram is

B'(0)= (Ax)u.:(f;) « B(0)

(Ao =1/Azx).

It is clear from Figure 1-5 that in order to avoid
overlap we must assure that Ag > 20 max, which makes

Az <

(1-30)

¢
-a'mnx

This is the basic sampling theorem; i.e., that we must
sample at a rate equal to the reciprocal of twice the
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highest frequency present in the record in order to )
avoid overlapping, or aliasing as it is called in com-
munication theory. (This sampling frequency is
called the Nyquist frequency in electrical engineering.)

In case the spectrum is band limited, i.e., extends
from o, to o5, where 0,70, we may be able to realize
a saving in sampling, as illustrated in Figure 1-6.

hlEd

.~ oL OR _+.L | 4IR
o yoLoT
(b) I P
| (o] +l
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. ' oL I+l [ie2L 42,R
R o Lo i
: : " : 3 : : : []
(c) ! 1 R N P L
-2 -1 o 41 +2
Figure 1-6. The Replicated Spectra for the Band Limit-

ed Sampling Theorem are Shown for the Case Where the
Sampling Interval in (b) was Az=1/oms and in (c)
Az=1/2(c2—01). Eachverticallineis one element of the L
function and is given an ordinal number that is assigned
starting from zero at the center of the original spectrum.
There is a pair of replicated spectra about each of these
elements, and each replicated spectrum is denoted by the
ordinal number of the element it belongs to (0, 1,2,...)
and the letter L or R, depending upon whether it is the
left or right member of the pair. The purpose of the
illustration is to show that, in the case o2=2¢1, halving
the ordinary sampling interval produces no overlap.

There we have a spectrum extending from o, to 20,
and we see that the space from 0 to o, may be filled in
with a replicated spectrum without incurring any
overlap. This is an illustration of the band-limited
version of the sampling theorem that provides that
if the spectrum is limited to the band (o1,029), the
interferogram may be sampled at the rate

az=1/QE2—01)), (1-37)

but with the important auxiliary condition that

(1-38)

oa2=h(@s—0,) where h=an integer,
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i.e., that the highest frequency be an integral multiple
of the bandwidth. (A few minutes spent in making a
drawing similar to Figure 1-6 in which Eq. (1-38) is
not satisfied will serve to convince the reader that
this is so0.)

1-4 THE MICHELSON INTERFEROMETER, Il: ETENDUE
GAIN AND APERTURE EFFECTS

1-4.1 Size of the Aperture in a Michelson Interferometer

In Section 1-2 we discussed the Michelson inter-
ferometer illuminated by a parallel bundle of radia-
tion emanating from a point source. In the real
situation an extended source is used and we have
rays that are not paralle]l to the axis. This produces
the well-known circular fringe pattern when the
planes of Af; and M ,’ are parallel (Figure 1-1). The
diameter of the rings is a maximum at zero path
difference, and we will concentrate our attention on
the central spot to answer the question: what is the
largest usable aperture the interferometer may
subtend.

The ring pattern is illustrated in Figure 1-7 for the

DARK

LIGHT
~~ \\\ LIGHT
DARK N\ V
M)

LIGHT 1

/ /1
/ /7

eI —

Figure 1-7. Upper Drawing: Ring Pattern
of Michelson Interferometer Illuminated by
Quasi-monochromatic Radiation With Finite
Solid Angle; Lower Drawing: Intensity Varia-
tion Across the Pattern Illustrated Above

situation where the intensity is a maximum at the
center (this illustration still applies to quasi-mono-
chromatic ilumination). As the path difference is
increased, the rings shrink and the intensity at any
point varies sinusoidally from a maximum to a
minimum. We must therefore limit the aperture to

include only one fringe, otherwise the interferogram .
will exhibit no variation of intensity with path.
difference.

The shrinking of the ring pattern with increasing
path difference requires that we set the aperture to
the size of the central spot at maximum path dif-
ference. The revision of Eq. (1-3) for the fringe -
pattern to include off axis rays is

dE =28B(0) do[1+cos (27oz cos a)] d2, (1-39)

where a=the angle between the ray and the axis and
dQ is the solid angle element.

If we choose the path difference so that the center
of the pattern has an intensity maximum, then the .
position of the first minimum may be computed
from Eq. (1-39). Using the small angle approxima-
tion, we treat the argument of the cosine function

2
2woz cos a=227wozx (1 —52—) .

The phase difference between the central ray and the
ray of the first intensity minimum is 7:

2
2roz (%—) =7
1.
“1 =gz

The solid angle subtended from the center to the
first intensity minimum for z=L and 6 =0 m,x is then

Q= 7"(!]2 =Lo'_——:u . (1-40)

Another effect on the interferogram arises from the
integration of Eq. (1-39). Using the small angle
approximation, and setting Q=wa?, the integration
over solid angle vields:

E=28B(0) doQ

[1+sinc (-2%) cos (27rdzo (1 -Z"(Z-r))] . (1—41)

The int
term or
features
functior
amount
ulating

If the i
of the
fringes
spectru
ence is
we may

where .
subten

System
the am
System



~rogram
h path

‘reasing
rture to

ath dif-
- fringe

(1-39)

.xis and

- center
:en the

mputed

"0Xima-~
on

.nd the

10 the
i3 then

(140)

m the
angle
-ration

(1-41)

The interferogram function is defined ‘as the second
term on the right. There are now two distinct new
features: the interferogram is modulatefi by a sinc
function and the wavenumbers are shifted by an
amount dependen‘t upon !:he solid angle. The mod-
ulating sinc function has its first zero at

2
oz

If the interferometer is driven beyond the first zero
of the modulating sinc function, the phase of the
fringes is reversed and energy is removed from the
spectrum rather than added to it as the path differ-
ence is increased. The absolute maximum aperture
we may use is therefore:

2= 21!'/L0mu. (1-42)

This aperture is twice that of Eq. (1-41), but since the
fringe contrast is attenuated severely toward the end
of the interferogram, there is an effective apodization
(to be discussed further below) that broadens the
scanning function in the spectrum and the gain
may be marginal. If Eq. (1-41) is used, the fringe
contrast at the maximum path difference (for omax)
is 0.64 that at the center, which is not a severe
apodization. If the larger solid angle is used, the
fringe contrast (again for om.x) goes to zero, the
scanning function is no longer sinc (¢L) but a broader
function, and it is wavenumber dependent, becoming
narrower with decreasing wavenumber. For this
reason, the aperture is conventionally set in accord-
ance with Eq. (141).

1-4.2  Comparison of Etendue for Michelson and Grating
Spectrometers

We define the étendue of an optical system as

where A =area of the collimator, and Q the solid angle
subtended by the detector.

The étendue is in general constant for an optical
system (i.e., it cannot be increased), and it determines
the amount of light that can be transmitted by the
system.

It is therefore sometimes referred to as
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“throughput” or “light-grasp” or even by the unhappy -
term “luminosity”.

We have already determined the solid.angle for the
Michelson interferometer, which we will now rewrite
using the following relations:

So=1/2L
Rsv/aa'.

(80 =resolution, R =résolving power).
Substituting these into Eq. (1-42) vields

27

QM =§ . (1-43)

To arrive at a corresponding equation for a grating
spectrometer we note that the solid angle subtended
by the exit slit is

where w and [ are thé width and length of the slit,
respectively, and f is the collimator focal length. For
a resolution éc and dispersion df/do, the exit slit
width is given by

dé o

dé
=% &

making

&

]
e~
Sl =
&
&S

qQ




14

It can easily be shown, using the grating equation,
that

de
o o=tan f=1.

(We assume that 6 is not grossly different from 45°—
i.c., that it is not very close to 90° or 0°. If it were we
would have either no energy or no dispersion.) This
makes

11
Qc= ? 7 (1-44)
and we compare the étendues
9
En=AQy ="’TA (1-45a)
1 A =
EG—AQG—}. B (1-45b)

Even for a very fast grating spectrometer, 1/f

does not exceed 4%, which makes the étendue of the

Michelson interferometer better than the grating
by a factor of 200, for equal collimator area and
resolving power, all other things being equal. This is
the genesis of the so-called throughput gain of the
Michelson interferometer, which is a direct result
of the cylindrical symmetry of the interferometer.
To realize an aperture gain from the use of the inter-
ferometer, it is important to meet the conditions of
equal area and equal resolving power. It is also
important that the detector be able to accept the
added solid angle available from the interferometer.
While this is usually the case, it requires attention in
the design of the optical system.

1-5 SPECTRAL RECOVERY

Although the spectrum is obtained in principle by
a Fourier transform of the interferogram, various
factors intervene to make the recovered spectrum an
imperfect representation of the true spectrum. The
most important ones are:

1. Aperture effect
2. Tilt and aberrations

3. Truncation
4. Phase and compensation error
5. Noise.

P —

Aperture effect has already been discussed above; '
it produces a shift of the computed wavenumbers |
and a reduction in contrast of the interferogram with .
increasing path difference. “Tilt” refers to failure of :
the movable mirror to translate strictly parallel to
itself, and its effect is to changé the contrast in the !
interferogram as some unpredictable function of the .

path difference. The subject of tilt compensation is
taken up by Steel in Chapter 3. Aberrations in the
optical system can produce asymmetric interfero-
grams as a result of distortion of the interference
fringe pattern (Figure 1-7).

This destroys the °

cylindrical symmetry of the Michelson interferometer °

and consequently reduces the étendue. If the asym-
metry is small, it can be corrected by the procedure
outlined below.

1-5.1 Truncation; Phase and Compensation Error

Let us assume that a less-than-ideal interferometer
produces an interferogram, I(z), that, as a result of
imperfect compensation for the beamsplitter, may
not be an even function of z. The sampled inter-
ferogram that goes to the computer is then

I'(z) =I1(z)T(z) w (z+e). (146)

The spectrum recovered by a cosine Fourier trans-
form will be

B'(0) =[B(0) * t(c)]ei® (147)

where B(g) is the true spectrum, ¢(¢) is the phase

function resulting from both the compensation error-
and the phase error € in wi(z+¢€). The latter arises

when the sampling signal is not synchronized with-
the interferogram to produce a sample at exactly.
zero path difference. The effect of a non-zero phase

function is to produce an asymmetric scanning func-:
tion that not only distorts the observed spectral lines-
but also modifies the baseline of the spectrum, thus
destroying the photometric accuracy of the measure-:
ments. T(z) represents the truncating function that;
terminates the interferogram at some length, L. The:
simplest truncating function is rect (z/L), and we have;

already seen that this produces a scanning function.

sinc (Lz). This may be modified (but not eliminated)}
by multiplying the interferogram by another func-
tion, A4(z), called an apodizing function, as will bel
discussed in the next Section.

or, alt
of Eq
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_ “The phase function, on the othey har}d, may be
liminated in & broad range of situations. One
i ;bility of course is to take the interferogram over
itive and negative values of path difference,
and compute both sine and cosine transforms. The
smplitude of the spectrum is then truly f{e'e of phase
distortions, provided the range of the original phase
errors is small with respect to the total length of the
interferogram. There are several reasons why this is
not 3 desirable procedure. The time to take the

interferogram, the total path difference required of -

the interferometer, and the total memory ¢apacity
required of the computer are all doubled. The
computer time required for the. fast Fourier transform
;s increased by a factor of a little more than 2. (If
the interferogram has N points between zero and L,
the double-sided transform requires a time 2+42/logo N
more than the single-sided one.) Finally, the process
of squaring to calculate the amplitude changes the
noise from a function randomly fluctuating about zero
to one that fluctuates about a positive value, thus
raising the effective noise level in the spectrum.

We therefore turn our attention to methods for
determining the spectrum from a cosine Fourier
transform alone. It is clear that if we had knowledge
of ¢(c) we could correct Eq. (1-47) and obtain the
spectrum

B"(0)=[B(0) x t(0)]=B'(s) - e~  (1-48)

or, alternatively, we would correct the interferogram
of Eq. (1-46) by the procedure

I'"(z)=1I'(z)  FTe—is (1-49)

and the FT of I'’(z) would yield B”(c). Either one
of these methods works, although the latter is in
more common use. The phase function ¢(o) is
determined from the sine and cosine transforms of
a short section of interferogram symmetric about
zero path difference. If the phase function is a result
of a failure to phase the sampling function properly,
then it will be linear in wavenumber. If compensation
error or aberrations are at fault, the phase function
will in general not be linear. If the compensation
error is very bad, then it may be difficult to produce a
proper phase correction, because it will be difficult
to find a point that can properly be labelled zero path
difference.
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1-5.2 Noise

There are four principal sources of noise in Fourier
spectroscopy (and any other kind as well):

(1) Source

(2) Detector

(3) Scintillation
(4) Digitization.

Since there is a paper in this series by Sakai devoted
to noise, we will limit this discussion to a few remarks
about each kind of noise.

The multiplex gain of Fourier spectroscopy was
derived in Section 1-1 on the assumption that the
detector is the limiting source of noise for the system.
If this is not so, then some other justification must be
supplied for using Fourier spectroscopy (such as
aperture gain). We will thus give no further attention
to the first two noise sources.

Scintillation noise arises in the medium intervening
between source and detector, and is most commonly
observed when a long path through a gas or the
atmosphere is involved, such as in astronomical work.
Scintillation effects can be overcome to some extent
by adjusting the interferogram frequency range to lie
outside the range of scintiliation frequencies, which
are usually limited to some well defined band. The
effects of scintillation noise may also be suppressed
to a large extent by a scheme known as internal
modulation. Instead of chopping the signal with a
rotating blade or some similar means, chopping is
accomplished by oscillating the path difference by an
amount equal to one-half wavelength of the central
wavenumber of the optical band reaching the detector.
This has the effect of chopping the ¢osine dependent
term in Eq. (140) without modulating the constant
term, thus eliminating any change of level in the
interferogram. It has been used with great success
by Connes.!

Digitization noise arises from two sources: (1)
unequal path difference between successive samples,
and (2) the effect of the minimum detectable incre-
ment (quantification) of the digital voltmeter. The
accuracy of the interval between successive readings
is exactly as important as the accuracy of ruling a
diffraction grating. It is a well-known fact that a
grating with random errors produces fog or noise, and
one with periodic errors produces ghosts; so it is in
Fourier spectroscopy. For the far infrared it may be
possible to rely on a high quality micrometer screw
to provide the position readout that triggers the data
acquisition system, but for any other region, either a
good moiré syvstem or an auxiliary measuring inter-
ferometer is indispensible. '

The dynamic range of the interferogram is very
large when a broad spectral range is being studied,
i.e., the peak value at zero path difference is large
compared to the oscillations in the remainder of
the interferogram. The digitizing svstem must have
adequate dvnamic range to handle both the central
maximum and the smaller oscillations without
seriously compromising the signal-to-noise ratio. As
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a rule of thumb we may apply the criterion that the
dynamic range of the digitizing system must be at
least equal to the signal-to-noise ratio in the inter-
ferogram at zero path difference.?

One final point on the subject of noise merits
mention in this discussion, and that is with regard to
the sampling theorem. The sampling theorem requires
that we sample twice per highest frequeney present
in the record, regardless of whether that be a signal
or noise frequeney.  Since a Jow-pass RC filter is
used in many recording syvstems, it is usually true
that the noise bandwidth is greater than the signal
bandwidth. The filter time constant is generally
chosen long enough to pass the highest signal fre-
quency  without appreciable attenuation or phase
shift. The slow rolloff of an RC filter permits higher
noise frequencies to come into the record than the
signal frequencies present, and the sampling interval
must be chosen accordingly.

1-6 SPECIAL TECHNIQUES OF FOURIER
SPECTROSCOPY

There are three special aspects of Iourier spec-
troscopy to which we will give brief separate mention
in this Section:

1. Apodization
2. Mathematical filtering
3. Refractometry

The first two are computational techniques, while the
latter is essentially an experimental modification of
the conventional spectroscopic setup.

Apodization® was mentioned earlier in the dis-
cussion of the scanning function. If the sinc scanning
function is not to our liking it may be modified by the
expedient of multiplying the right side of Eq. (1-46)
by another function A (z). The usual apodizing func-
tion, A (x). is an even function that has value unity
at z=0 and zero at X==L. The new scanning
function then is the IFourier transform of A(z). The
original truncating function, 7'(z), has no influence
on the new scanning function, since it does not alter
the frequency content of A(z) in any way. (See the
remarks about the convolution of two sinc functions
in Section 1-3.4.) The copious oscillations of the sinc
function are a consequence of the square corners of
the truncating function (rect (z)), which indicates
that to reduce these oscillations we must choose for
A(r) a function that varies more smoothly. If we
choose A(zr)=4A(z), the scanning function becomes
sine? (x) (Figure 1-2), which has considerably smaller
side lobes than sine (z). It has, however, twice the
width of the original scanning function for the same
total interferogram length. The (sinc)? function is
also the slit function of a diffraction-limited grating
spectrometer, and may have some advantages for
comparison purposes. Whether it has merits in and
of itself is a matter for individual workers to determine
in their own situations.

A number of other apodizing functions have been

discussed and used (see Ref. 2), but there is room for:

considerable discussion whether any apodization is
necessary at all—at least under Jaboratory conditions.

Apodization is basically a trade-off between the width'
of the seanning function (resolution) and its smooth-.
ness. The smoothness of the scanning function affects.
the ability to detect a weak line close to a strong one,.
but if the resolution sacrificed in reducing the oscilla-.

tions of the scanning function is enough to blend the
lines that were to be resolved, then nothing has been
gained.
dization in laboratory situations is that it is simpler
than exercising any other control over line widths
(such as adjusting gas pressure). Its utility in other
applications, such as astronomical Iourier spec
troscopy, is more clear cut, as the conditions of
excitation are not at the experimenter’s disposal.
Mathematical filtering’ is a technique for altering

the frequency content of an interferogram prior to’

performing the Fourier transform. This permits s
two-fold saving: a reduction in the number of samples
required (saving on computer storage), and a reduc
tion in computer time required to do the transforms
tion. The method is based on the fact that reducing
the spectral bandwidth may be accomplished bs:
convolving the interferogram with a sinc function..
which is equivalent to multiplying by a rect functios
in the spectrum. The processes in the z and o domais:.
are illustrated in Figure 1-8. The utility of the pro

(a) /,/\ (b)
I
“min “max
(c) ” (d)
o) %2

)

) %2

Figure 1-8. Mathematical Filtering: (a) the Origin
Spectrum and (b) the Original Interferogram. It is desired ¥
limit the spectrum to the range (3, ¢2), which may be 8
complished by multiplying the spectrum by the rect functi®’
in (¢) or convolving the interferogram with (d), the FT of RS
rect function. The FT of the rect function is a cosine “carri€l-
modulated by a sinc function envelope. The sinc functio? )
characteristic of the width of the rect function and %
“carrier” frequency depends upon the distance of the f"j
function from the origin (shift theorem). The resulting SP"‘)'
trum is shown in (e), and the sampied interferogram in (s
The sampling rate in the interferogram is determined by ¥
sinc function frequency and not the “carrier” frequency, 35
result of the band limited version of the sampling theore™ :
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cedure lies in the fact _that it may be necessary or
desirable to record an 1n§erferogram with a broader
range of signal frequencies tpan the experimenter
intends ultimately to use. _This could arise if appro-

riate filters were not available, or, in the case of a
non-recurring event, when the best spectral region
cannot be prgdicted. .

The technique of refractometry®:? is derived from
the familiar refractometers of the visible region, but
with a difference. The sample is placed in one arm
of the interferometer and an interferogram is taken,
which will now assuredly be asymmetric. The phase
curve contains the refractive index information and
the absorption coefficient may be determined from the
amplitude spectrum. The precision possible in this
technique is & significant advance over other available
techniques for determining far infrared optical

roperties. (Chapter 5 by Bell is devoted to this

subject.)

1-7 COMPUTATION IN FOURIER SPECTROSCOPY

The overriding factor in computation for Fourier
spectroscopy today is the fast Fourier transform,
or Cooley-Tukey algorithm,'® which has changed the
computational problem from one of cost to one of
finding & computer with sufficiently large memory
capacity to do the desired transforms. The time
required for the I'F'T is proportional to N log, N’ com-
pared to N for the conventional method (N = number
of points transformed). An actual interferogram of
4096 points can be transformed in 14 sec by the FFT,
compared to 2734 sec (45 min) by orthodox methods.*
This fact has also served to make irrelevant anyv
discussion of analog computers, which have been so
laboriously constructed in several laboratories.

1. Connes, J., and Connes, P. (1966) J. Opt. Soc.
Am. 56: 896, Connes, J., Connes, P., and Maillard, P.
(1969) Atlas des Spectres Infrarouges de Venus, Mars,
Jupiter et Saturne (Paris, Editions du Centre National
de la Recherche Scientifique).

2. Bracewell, R. (1963) The Fourier Transform and
Its Applications (McGraw-Hill Book Company, New
York). This book is the basic reference for the entire
mathematical section of this paper.

3. Papoulis, A. (1962) The Fourier Integral and Its
Applications McGraw-Hill Book Co., New York,
p. 269 ff. .

4. Vanasse, G. A., and Sakai, H. (1967) in Progress
in Optics, E. Wolf, ed., North Holland Publishing
Company, Amsterdam, Vol. VI, p. 260 fi.

5. Sakai, H., Vanasse, G. A., and Forman, M.
(1968) J. Opt. Soc. Am. 58: §4.
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Since there is a paper by J. Connes covering the
subject of computation (Chapter 6), there is no need
to consider it in depth here. It might be well to close
with the remark that the speed of the FFT is so great
that convolution may often be performed faster by
transforming into the other domain, multiplying, and
transforming back, using the convolution theorem
than by direct convolution. The time required fo;
convolution is A/ XN, the product of the number of
points in the convolvants. If 3/ is significantly larger
than log, N, then the direct convolution is too in-
efficient. TFor example, if phase correction is to be
performed using Eq. (1-49), the convolution will take
considerably more time than the Fourier transform
of the interferogram, if it is done by the conventional
method.

1-8 CONCLUSION

Fourier spectroscopy is at the point where it is
competitive on a cost basis with any other form of
spectroscopy and its very considerable advantages
have been proven experimentally. It has been applied
in both favorable and -unfavorable environments.
The inherent simplicity of the apparatus should be
appealing to experimentalists, and the delays in-
curred in computing the spectra can be made neg-
ligible. The published theory of Fourier spectroscopy
is adequate to cover all cases except the most radically
uncompensated interferometers.

To those not using Fourier spectroscopy in their
work, we may quote from the Epistle of James,
“But be ye doers of the word and not hearers only,
deceiving your own selves.”
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